0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Reproducing Field Measurements Using Scaled-Down Hydraulic Model Studies in a Laboratory

Author(s):

Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2018
Page(s): 1-11
DOI: 10.1155/2018/9091506
Abstract:

Little efforts have been made to the value of laboratory model study in closing the gap between results from idealized laboratory experiments and those from field data. Thus, at first, three bridge sites were selected and equipped with fathometers to find the bed elevation change in the vicinity of bridge pier over time. After and during the flooding, the stream flow variables and their bathymetry were measured using current viable technologies at the field. Then, to develop and suggest a laboratory modeling techniques, full three-dimensional physical models including measured river bathymetry and bridge geometry were designed and fabricated in a laboratory based on the scale ratio except for the sediment size, and the laboratory results were compared with the field measurements. Size of uniform sediment was carefully selected and used in the laboratory to explore the scale effect caused by sediment size scaling. The comparisons between laboratory results and field measurements show that the physical models successfully reproduced the flow characteristics and the scour depth around bridge foundations. With respect to the location of the maximum scour depth, they are not consistent with the results as in the previous research. Instead of occurring at the nose of each pier, the maximum scour depths are located further downstream of each pier column in several experimental runs because of the combination of complex pier bent geometry and river bathymetry, and the resulting unique flow motions around the pier bent.

Copyright: © 2018 Seung Oh Lee et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10176493
  • Published on:
    30/11/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine