0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Prediction of Effective Width of Varying Depth Box-Girder Bridges Using Convolutional Neural Networks

Author(s): ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2022
Page(s): 1-9
DOI: 10.1155/2022/4617392
Abstract:

Effective flange width is widely used in bridge design to consider the effect of shear lag. The simplified formula for the effective flange width of box girder bridges of variable depth in existing codes and studies may not be conservative, and accurate methods, such as the finite element method, are time-consuming. The purpose of this research is to develop a method that uses a convolutional neural network (CNN) to predict the effective width of box girder bridges of varying depths. These models have been trained, validated, and tested on datasets generated from thousands of finite element models. The lower error in the test set indicates that the CNN model can be used to predict the effective width. In addition, the impact of different architectures is also studied. The proposed method makes real-time analysis possible and has a wide range of applications in the analysis and design of box-girder bridges at different depths.

Copyright: © 2022 Kejian Hu and Xiaoguang Wu et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10660743
  • Published on:
    28/03/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine