Prediction of Effective Width of Varying Depth Box-Girder Bridges Using Convolutional Neural Networks
Autor(en): |
Kejian Hu
Xiaoguang Wu |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Advances in Civil Engineering, Januar 2022, v. 2022 |
Seite(n): | 1-9 |
DOI: | 10.1155/2022/4617392 |
Abstrakt: |
Effective flange width is widely used in bridge design to consider the effect of shear lag. The simplified formula for the effective flange width of box girder bridges of variable depth in existing codes and studies may not be conservative, and accurate methods, such as the finite element method, are time-consuming. The purpose of this research is to develop a method that uses a convolutional neural network (CNN) to predict the effective width of box girder bridges of varying depths. These models have been trained, validated, and tested on datasets generated from thousands of finite element models. The lower error in the test set indicates that the CNN model can be used to predict the effective width. In addition, the impact of different architectures is also studied. The proposed method makes real-time analysis possible and has a wide range of applications in the analysis and design of box-girder bridges at different depths. |
Copyright: | © 2022 Kejian Hu and Xiaoguang Wu et al. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.82 MB
- Über diese
Datenseite - Reference-ID
10660743 - Veröffentlicht am:
28.03.2022 - Geändert am:
01.06.2022