0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Prediction of Effective Width of Varying Depth Box-Girder Bridges Using Convolutional Neural Networks

Auteur(s): ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2022
Page(s): 1-9
DOI: 10.1155/2022/4617392
Abstrait:

Effective flange width is widely used in bridge design to consider the effect of shear lag. The simplified formula for the effective flange width of box girder bridges of variable depth in existing codes and studies may not be conservative, and accurate methods, such as the finite element method, are time-consuming. The purpose of this research is to develop a method that uses a convolutional neural network (CNN) to predict the effective width of box girder bridges of varying depths. These models have been trained, validated, and tested on datasets generated from thousands of finite element models. The lower error in the test set indicates that the CNN model can be used to predict the effective width. In addition, the impact of different architectures is also studied. The proposed method makes real-time analysis possible and has a wide range of applications in the analysis and design of box-girder bridges at different depths.

Copyright: © 2022 Kejian Hu and Xiaoguang Wu et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10660743
  • Publié(e) le:
    28.03.2022
  • Modifié(e) le:
    01.06.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine