Effect of Curing Conditions on the Shrinkage of Ultra High-Performance Fiber-Reinforced Concrete
Author(s): |
Song Han
Yefu Cui Hanfeng Huang Mingzhe An Ziruo Yu |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, 2018, v. 2018 |
Page(s): | 1-8 |
DOI: | 10.1155/2018/5238278 |
Abstract: |
The effect of curing conditions on the early age and long-term shrinkage of ultra high-performance fiber-reinforced concrete (UHPFRC) was systematically studied. The shrinkage of the early age (0–168 h) and long-term age (0–90 d) of UHPFRC material was measured based on three kinds of humidity conditions (dry, sealed, and soaked) and curing temperatures (25°C, 40°C, and 75°C), respectively. In this paper, the hydration degree of different shrinkage stages was studied in combination with chemical-bound water experiment. Meanwhile, the influencing mechanism of curing condition on the shrinkage of UHPFRC was analyzed. The results show that the early shrinkage rate of UHPFRC is accelerated with the increase of temperature, and the rate of shrinkage development at the latter stage is suppressed with the increase of temperature. With the increase of humidity, the early age shrinkage of UHPFRC and its increasing rate gradually decrease, which means drying condition > sealing condition > soaking condition. According to the long-term shrinkage results, increasing temperature has very significant inhibiting effect on the UHPFRC shrinkage in the sealed condition. Due to the majority of the in-site components of UHPFRC cured in the sealed condition, high-temperature curing has evident inhibition of early age shrinkage of UHPFRC. Therefore, promoting curing temperature is fairly effective at inhibiting the early age shrinkage of UHPFRC for the in-site structures. |
Copyright: | © 2018 Song Han et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.52 MB
- About this
data sheet - Reference-ID
10176521 - Published on:
30/11/2018 - Last updated on:
02/06/2021