0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Cost Overrun Risk Assessment and Prediction in Construction Projects: A Bayesian Network Classifier Approach

Author(s): ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 12
Page(s): 1660
DOI: 10.3390/buildings12101660
Abstract:

Cost overrun risks are declared to be dynamic and interdependent. Ignoring the relationship between cost overrun risks during the risk assessment process is one of the primary reasons construction projects go over budget. Conversely, recent studies have failed to account for potential interrelationships between risk factors in their machine learning (ML) models. Additionally, the presented ML models are not interpretable. Thus, this study contributes to the entire ML process using a Bayesian network (BN) classifier model by considering the possible interactions between predictors, which are cost overrun risks, to predict cost overrun and assess cost overrun risks. Furthermore, this study compared the BN classifier model’s performance accuracy to that of the Naive Bayes (NB) and decision tree (DT) models to determine the effect of considering possible correlations between cost overrun risks on prediction accuracy. Moreover, the most critical risks and their relationships are identified by interpreting the learned BN model. The results indicated that the 18 BN models demonstrated an average prediction accuracy of 78.86%, significantly higher than the NB and DT. The present study identified the most significant risks as an increase in the cost of materials, lack of knowledge and experience among human resources, and inflation.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10700381
  • Published on:
    11/12/2022
  • Last updated on:
    15/02/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine