0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Cost Overrun Risk Assessment and Prediction in Construction Projects: A Bayesian Network Classifier Approach

Autor(en): ORCID
ORCID
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 10, v. 12
Seite(n): 1660
DOI: 10.3390/buildings12101660
Abstrakt:

Cost overrun risks are declared to be dynamic and interdependent. Ignoring the relationship between cost overrun risks during the risk assessment process is one of the primary reasons construction projects go over budget. Conversely, recent studies have failed to account for potential interrelationships between risk factors in their machine learning (ML) models. Additionally, the presented ML models are not interpretable. Thus, this study contributes to the entire ML process using a Bayesian network (BN) classifier model by considering the possible interactions between predictors, which are cost overrun risks, to predict cost overrun and assess cost overrun risks. Furthermore, this study compared the BN classifier model’s performance accuracy to that of the Naive Bayes (NB) and decision tree (DT) models to determine the effect of considering possible correlations between cost overrun risks on prediction accuracy. Moreover, the most critical risks and their relationships are identified by interpreting the learned BN model. The results indicated that the 18 BN models demonstrated an average prediction accuracy of 78.86%, significantly higher than the NB and DT. The present study identified the most significant risks as an increase in the cost of materials, lack of knowledge and experience among human resources, and inflation.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10700381
  • Veröffentlicht am:
    11.12.2022
  • Geändert am:
    15.02.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine