Towards Deployable, Autonomous, Vibration Control Systems for Lightweight Footbridges
Author(s): |
Kevin Goorts
Sriram Narasimhan |
---|---|
Medium: | conference paper |
Language(s): | English |
Conference: | Footbridge 2017 Berlin - Tell A Story, 6-8.9.2017, Technische Universität Berlin (TU Berlin) |
Published in: | Footbridge 2017 Berlin - Tell A Story |
Year: | 2017 |
DOI: | 10.24904/footbridge2017.09737 |
Abstract: |
Structural control devices enable realizing innovative designs for lightweight footbridges by suppressing excessive vibrations that arise from the reduced self-weight. Currently, most control devices are permanent installations, tuned to a particular structural property and hence specific to a particular implementation. This paper presents the concept of a deployable, autonomous control system (DACS) targeting specific applications where immediate, short-term vibration mitigation is desired. The proposed DACS consists of an electromagnetic mass damper (EMD) mounted on an unmanned ground vehicle (UGV) equipped with vision sensors. The overall controller consists of a linear quadratic Gaussian (LQG) feedback controller in series with an identified model to compensate for UGV dynamics and a position-feedback controller for the EMD. The DACS does not rely on a rigid connection to the structure, thus enabling rapid deployment for temporary applications. Autonomous positioning of the device at desired locations on the structure is achieved through a simultaneous localization and mapping (SLAM) solution. The performance of the SLAM solution is assessed using a full-scale aluminum footbridge while the overall control performance of the proposed system is evaluated through real-time hybrid simulation (RTHS) consisting of coupled experimental and numerical substructures. The experimental results confirm the ability of the proposed system to effectively control large amplitude motion in slender footbridges and reposition itself for controlling different modes. |
Keywords: |
active structural control autonomous robotics mobile control system lightweight footbridges
|
License: | This creative work is copyrighted. The copyright holder(s) do(es) not grant any usage rights other than viewing and downloading the work for personal use. Further copying or publication requires the permission of the copyright holder(s). |
0.74 MB Download full text file (PDF)
0.38 MB
- About this
data sheet - Reference-ID
10075349 - Published on:
01/09/2017 - Last updated on:
10/06/2021