0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

General Information

Name in local language: Γέφυρα Ρίου-Αντίρριου "Χαρίλαος Τρικούπης"
Other name(s): Rion-Antirion Bridge
Beginning of works: 1999
Completion: 7 August 2004
Status: in use

Project Type

Awards and Distinctions

2006 award winner  

2005 award winner  

Location

Location: , , ,
, , ,
Coordinates: 38° 19' 1" N    21° 46' 31" E
Show coordinates on a map

Technical Information

Dimensions

total length 2 880.400 m
main bridge
main span 560 m
length 2 252 m
span lengths 286 m - 3 × 560 m - 286 m
deck deck depth 2.82 m
deck width 27.20 m
girder depth 2.75 m
pylons pylon height (above deck) 113.00 m

Cost

cost of construction Euro 630 000 000

Materials

deck composite steel-reinforced concrete
piers reinforced concrete

Chronology

1880

Harilaos Trikoupis, then prime minister of Greece, is among the first to imagine a link at this location.

21 May 2004

The last piece of the deck is mounted.

Night of 7 August 2004
— 8 August 2004

In a grand ceremony including major fireworks, the bridge is officially inaugurated.

8 August 2004

Irina Szewinska from Poland and winner at the olympic games in Montreal and Mexico, Otto Rehagel, coach of the Greek soccer team that won the Euro 2004 championship, and Stratos Apostolakis, coach of the Greek Olympic soccer team, carry the Olympic flame across the bridge on its way to Athens for the Summer Olympics.

12 August 2004

The bridge is opened to traffic.

2005

Outstanding Civil Engineering Achievement (ASCE)

28 January 2005

One of the cables catches fire, possibly after being hit by lightning. The bridge is closed to traffic indefinitely in order to assess the damage.

1 February 2005

The bridge is re-opened to traffic, though use is limited to a single lane until the damage to the cable-stay has been repaired.

2006

Outstanding Structure Award (IABSE)

2006

Outstanding Concrete Structure Award (FIB)

Notes

Concessionaire Gefyra and contractor Kinopraxia are composed of:

  • Vinci (53%)
  • J&P Hellas (11,2%)
  • TEV (7,74%)
  • Helleniki Technodomiki (7,74%)
  • Athena (7,74%)
  • Proodeftiki (7,74%)
  • Sarandopoulos (7,74%)

Financing:

  • Greek Government: 43%
  • European Investment Bank: 47%
  • Stock holder capital: 10%
Expected traffic: 11 000 vehicles/day

Duration of construction: 5 years
Length of the concession: 42 years

The bridge is designed to withstand earthquakes of 7.5 on the Richter scale.

Excerpt from Wikipedia

The Rio–Antirrio Bridge (Greek: Γέφυρα Ρίου-Αντιρρίου), officially the Charilaos Trikoupis Bridge, is one of the world's longest multi-span cable-stayed bridges and longest of the fully suspended type. It crosses the Gulf of Corinth near Patras, linking the town of Rio on the Peloponnese peninsula to Antirrio on mainland Greece by road. It opened one day before the Athens 2004 Summer Olympics, on 12 August 2004, and was used to transport the Olympic Flame.

Location

The 2,380-metre-long (7,808 ft) bridge (approximately 1.8 miles) dramatically improves access to and from the Peloponnese, which could previously be reached only by ferry or via the isthmus of Corinth in the east. Its width is 28 m (92 ft) — it has two vehicle lanes per direction, an emergency lane and a pedestrian walkway. Its five-span four-pylon cable-stayed portion of length 2,252 m (7,388 ft) is the world's third longest cable-stayed deck; only the decks of the Jiaxing-Shaoxing Sea Bridge in Shaoxing, China and the Millau Viaduct in southern France are longer at 2,680 m (8,793 ft) and 2,460 m (8,071 ft), respectively. However, as the former has a shorter length of main span (the length of the main span is the most common way to rank cable-stayed bridges, as the size of the main span does often correlate with the height of the towers, and the engineering complexity involved in designing and constructing the bridge) and as the latter is also supported by bearings at the pylons apart from cable stays, the Rio–Antirrio Bridge deck might be considered the longest cable-stayed "suspended" deck in the world.

This bridge is widely considered to be an engineering masterpiece, owing to several solutions applied to span the difficult site. These difficulties include deep water, insecure materials for foundations, seismic activity, the probability of tsunamis, and the expansion of the Gulf of Corinth due to plate tectonics.

Construction

Charilaos Trikoupis was a 19th-century prime minister of Greece who suggested building a bridge in the current location but the wealth of Greece at the time didn't permit its construction.

The bridge was planned in the mid-1990s and was built by a French-Greek consortium led by the French group Vinci SA which includes the Greek companies Hellenic Technodomiki-TEV, J&P-Avax, Athena, Proodeftiki and Pantechniki. The consortium operates the bridge under concession under its ΓΕΦΥΡΑ or ΓαλλοΕλληνικός Φορέας Υπερθαλάσσιας ζεύξης Ρίου-Αντιρίου (GEFYRA—Greek for "bridge"—or GalloEllinikós Foréas Yperthalássias zéfxis Ríou-Antiríou, French-Greek Carrier of Oversea Connection of Rio–Antirrio) subsidiary.

The lead architect was Berdj Mikaelian. Site preparation and dredging began in July 1998, and construction of the massive supporting pylons in 2000. With these complete in 2003, work began on the traffic decks with the steel fabrication being carried out by Cleveland Bridge U.K. and supporting cables by Freyssinet. On 21 May 2004 the main construction was completed; only equipment (sidewalks, railings, etc.) and waterproofing remained to be installed.

The total cost of the bridge was about €630 million, funded by Greek state funds, the consortium and loans by the European Investment Bank. It was finished ahead of its original schedule, which had foreseen completion between September and November 2004, and within budget. Other sources talk about €839 million.

Inauguration

The bridge was inaugurated on 7 August 2004, a week before the opening of the 2004 Summer Olympics in Athens. Olympic torchbearers were the first to officially cross it. One of them was Otto Rehhagel, the German football coach who won the Euro 2004 Championships for Greece. Another was Costas Laliotis, the former Minister of Public Works during whose term the project had begun.

Engineering feats

Due to the peculiar conditions of the straits, several unique engineering problems needed to be considered and overcome. The water depth reaches 65 m, the seabed is mostly of loose sediment, the seismic activity and possibility of tectonic movement is significant, and the Gulf of Corinth is expanding at a rate of about 30 mm a year. In addition, the hills on either side create a wind tunnel where 70 mph winds are common.

For these reasons, special design and construction techniques were applied. Beneath each pier the seabed was first reinforced and stabilized by driving 200 hollow steel pipes vertically into the ground. The pier footings were not buried into the seabed, but rather rest on a bed of gravel meticulously leveled to an even surface (a difficult endeavor at this depth). During an earthquake, the piers can move laterally on the sea floor with the gravel bed absorbing the energy. The bridge decking is connected to the pylons using jacks and dampers to absorb movement; too rigid a connection would cause the bridge structure to fail in the event of an earthquake and too much lateral leeway would damage the piers. There is also provision for the gradual widening of the strait over the lifetime of the bridge. Protection from the effect of high winds on the decking is provided by the use of aerodynamic spoiler-like fairing and on the cables by the use of spiral Scruton strakes.

The bridge received the 2006 Outstanding Structure Award from the International Association for Bridge and Structural Engineering. In 2006 the bridge was featured in an episode of Megastructures on the National Geographic Channel. In 2011 the bridge returned to TV in an episode of Richard Hammond's Engineering Connections. In 2015, construction of the bridge was chronicled in the first episode of the Science Channel series Impossible Engineering.

Trouble with cable links

On 28 January 2005, six months after the opening of the bridge, one of the cable links of the bridge snapped from the top of the M1 pylon and came crashing down on the deck. Traffic was immediately halted. The first investigation claimed that a fire had broken out on the top of the M1 pylon, after a lightning strike in one of the cables. The cable was immediately restored and the bridge reopened.

Monitoring system

A structural health monitoring system was installed during construction on the bridge. Still operating, it provides a 24/7 surveillance of the structure. The system has more than 100 sensors, including:

  • 3D accelerometers on the deck, pylons, stay cables, and on the ground to characterize wind movements and seismic tremors
  • Strain gauges and load cells on the stay cables and their gussets
  • Displacement sensors on the expansion joints to measure the thermal expansion of the deck
  • Water-level sensors on the pylon bases to detect infiltration
  • Temperature sensors in the deck to detect freezing conditions
  • Linear variable differential transducer (LVDT) sensors on the stay cables to measure movement
  • Load cells on the restrainers for recalibration in the event of an earthquake
  • Two weather stations to measure wind intensity, direction, air temperature, and relative humidity

One specific element of the system is the ability to detect and specifically treat earthquake events.

Text imported from Wikipedia article "Rio-Antirrio Bridge" and modified on 03 June 2020 according to the CC-BY-SA 3.0 license.

Participants

Owner
Concessionaire
Client
Design
Architecture
Dynamic analysis
Wind analysis
Structural engineering
Seismic engineering
Consulting
Consulting engineers
Construction engineers
Checking engineering
Construction
Overseeing engineers
Steel construction
Subcontractor
Stay cables
Formwork
Monitoring equipment
Construction supervision
Project direction
Barges for launching of prefabricated elements
Software

Relevant Web Sites

Relevant Publications

More publications...
  • About this
    data sheet
  • Structure-ID
    20001110
  • Published on:
    19/10/2000
  • Last updated on:
    19/03/2017