0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Using Municipal Solid-Waste Incinerator Fly Ash, Wash Water, and Propylene Fibers in Self-Compacting Repair Mortar, Greenhouse Gas Emissions Potential

Author(s):





Medium: journal article
Language(s): English
Published in: International Journal of Concrete Structures and Materials, , n. 1, v. 18
DOI: 10.1186/s40069-024-00694-9
Abstract:

Wash water, municipal solid waste incineration (MSWI) fly ash, and propylene (PP) fibers were employed simultaneously to produce self-compacting repair mortar (SCRM). Different SCRM mixtures were utilized, incorporating 35, 70, and 140 kg/m3 of MSWI fly ash, along with 0.1% of PP fibers. The research focused on investigating the workability, mechanical properties, and global warming potential (GWP) of SCRM. The incorporation of MSWI fly ash and wash water in SCRM resulted in reduced workability, necessitating an increase in the use of superplasticizer. Adding MSWI fly ash decreases compressive strength. The minimum compressive strength was observed when employing 140 kg/m3 of MSWI fly ash and wash water instead of tap water simultaneously. By increasing the proportion of MSWI fly ash content and correspondingly reducing the cement content in SCRM samples, there was a decrease in flexural strength. The ultrasonic pulse velocity (UPV) of all SCRM samples falls within acceptable range. Adding MSWI fly ash to SCRM reduces fracture toughness, and the concurrent use of wash water and MSWI fly ash significantly decreases fracture toughness. Incorporating PP fibers into SCRM resulted in increased compressive strength. Utilizing wash water and MSWI fly ash in SCRM significantly reduces GWP. The avoidance of wash water consumption mitigates the environmental impact of SCRM.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1186/s40069-024-00694-9.
  • About this
    data sheet
  • Reference-ID
    10798130
  • Published on:
    01/09/2024
  • Last updated on:
    01/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine