0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The Use of Callovo-Oxfordian Argillite as a Raw Material for Portland Cement Clinker Production

Author(s):
ORCID
ORCID



Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 12
Page(s): 1421
DOI: 10.3390/buildings12091421
Abstract:

Excavated soils and rocks are materials obtained in construction works that could represent an ecological issue if a durable and efficient reuse process is not set. The radioactive waste disposal planned by the French National Radioactive Waste Management Agency will generate large quantities of excavated soil (mainly as Callovo-Oxfordian argillite). The re-use of excavated soils is a recent question. There is a lack in the literature concerning the recycling of such materials. Therefore, this paper aims to investigate the possibility of using Callovo-Oxfordian argillite (COx argillite from the French URL) as a raw material for Portland cement clinker production. COx argillite was first characterized by X-ray diffraction (XRD) and X-ray fluorescence (XRF) then a Portland cement clinker was synthesized at laboratory scale. The produced clinker was characterized to verify the chemical and mineralogical composition. After adding gypsum, the reactivity of the resulting cement was assessed by setting time and isothermal calorimetry measurements. The compressive strength was assessed on standard mortar prisms at 1, 14 and 28 days. The results show that a Portland cement clinker containing 64% C3S, 14% C2S, 10% C4AF, 7% C3A and 1% CaO can be produced when 22.24% of raw meal was substituted by the COx argillite. The setting time and isothermal calorimetry results show that the produced cement shows an equivalent reactivity to conventional ordinary Portland cement. The compressive strength at 28 days is 56 MPa, showing that the produced cement can be considered as CEM I 52.5 N Portland cement.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10692676
  • Published on:
    23/09/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine