0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Synchro-Squeezed Adaptive Wavelet Transform-Based Optimized Multiple Analytical Mode Decomposition: Parameter Identification of Cable-Stayed Bridge under Earthquake Input

Author(s):



Medium: journal article
Language(s): English
Published in: Buildings, , n. 8, v. 12
Page(s): 1285
DOI: 10.3390/buildings12081285
Abstract:

Deriving critical parametric information from recorded signals for system identification is critical in structural health monitoring and damage detection, while the time-varying nature of most signals often requires significant processing efforts due to structural nonlinearity. In this study, synchro-squeezed adaptive wavelet transform-based optimized multiple analytical mode decomposition (SSAWT-oMAMD) is proposed. The SSAWT algorithm acts as the preprocessing algorithm for clear signal component separation, high temporal and frequency resolution, and accurate time–frequency representation. Optimized MAMD is then utilized for signal denoising, decomposition, and identification, with the help of AWT for bisecting frequency determination. The SSAWT-oMAMD is first verified by the analytical model of two Duffing systems, where clear separation of the two signals is presented and identification of complex time-varying stiffness is achieved with errors less than 2.9%. The algorithm is then applied to system identification of a cable-stayed bridge model subjected to earthquake loading. Based on both numerical and experimental results, the proposed method is effective in identifying the structural state and viscous damping coefficient.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10692755
  • Published on:
    23/09/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine