Synchro-Squeezed Adaptive Wavelet Transform-Based Optimized Multiple Analytical Mode Decomposition: Parameter Identification of Cable-Stayed Bridge under Earthquake Input
Autor(en): |
Hongya Qu
An Chang Tiantian Li Zhongguo Guan |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 31 Juli 2022, n. 8, v. 12 |
Seite(n): | 1285 |
DOI: | 10.3390/buildings12081285 |
Abstrakt: |
Deriving critical parametric information from recorded signals for system identification is critical in structural health monitoring and damage detection, while the time-varying nature of most signals often requires significant processing efforts due to structural nonlinearity. In this study, synchro-squeezed adaptive wavelet transform-based optimized multiple analytical mode decomposition (SSAWT-oMAMD) is proposed. The SSAWT algorithm acts as the preprocessing algorithm for clear signal component separation, high temporal and frequency resolution, and accurate time–frequency representation. Optimized MAMD is then utilized for signal denoising, decomposition, and identification, with the help of AWT for bisecting frequency determination. The SSAWT-oMAMD is first verified by the analytical model of two Duffing systems, where clear separation of the two signals is presented and identification of complex time-varying stiffness is achieved with errors less than 2.9%. The algorithm is then applied to system identification of a cable-stayed bridge model subjected to earthquake loading. Based on both numerical and experimental results, the proposed method is effective in identifying the structural state and viscous damping coefficient. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
8.99 MB
- Über diese
Datenseite - Reference-ID
10692755 - Veröffentlicht am:
23.09.2022 - Geändert am:
10.11.2022