0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on Thixotropy of Mastic Asphalt Binder and Asphalt Mastic

Author(s):
ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 13
Page(s): 2380
DOI: 10.3390/buildings13092380
Abstract:

In order to analyze the thixotropy of mastic asphalt concrete during the mixing process, the factors affecting the thixotropy of mastic asphalt binder and asphalt mastic are studied, and the measures to shorten the mixing time of mastic asphalt mixture are given. The dynamic viscosity of mastic asphalt binder and asphalt mastic with time and shear rate is obtained via the step frequency method, and the thixotropic constitutive models of mastic asphalt binder and asphalt mastic are constructed by structural dynamics model, exponential equation, and extended exponential equation respectvely. The improved time thixotropy index is used to analyze the effects of asphalt type, asphalt–aggregate ratio, filler type, heating temperature, and shear rate, and the laws of various factors affecting the thixotropy of mastic asphalt binder and asphalt mastic are obtained. The research shows that the extended exponential model can better characterize the thixotropy of mastic asphalt binder and asphalt mastic under different shear rates. When the amount of lake asphalt or cement is increased, the viscosity of the system and the mixing time to reach a steady viscosity increases; that is, the mixing time needs to be increased. Increasing shear temperature does not change the time parameter to reach steady viscosity; that is, it cannot shorten mixing time. When the shear rate is increased, the time for the system to reach the steady viscosity will be shortened; that is, the time for mixing the mixture can be shortened.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10744585
  • Published on:
    28/10/2023
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine