Study on the Influence of a Rubber-Modified Soil Isolation Layer on the Isolation Performance of Frame Structures with Different Foundation Forms
Author(s): |
Shaoqiang Chai
Yong Chen Dongbo Cai Wei Wang Qihao Chen Jinhao Liu |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 10 October 2023, n. 10, v. 13 |
Page(s): | 2584 |
DOI: | 10.3390/buildings13102584 |
Abstract: |
In order to investigate the seismic performance of a rubber-modified soil isolation layer, a three-dimensional finite element model was constructed using finite element analysis software, utilizing a two-story frame structure as the engineering background. Nonlinear dynamic time history analysis and comparisons were performed against the seismic performance of the structure. The evaluation was based on several parameters, including the contact area of the base, the thickness of the rubber-particle_modified soil isolation layer, ground motion records with varying amplitudes, and seismic frequency spectrum characteristics. The research findings indicate that the implementation of a rubber-modified soil isolation layer effectively mitigates the peak acceleration, horizontal displacement, and shear stress of the frame structure. This not only enhances the seismic performance of the structure but also enlarges the contact area of the base. Increasing the thickness of the rubber-modified soil isolation layer will effectively decrease the peak acceleration, horizontal displacement, and shear stress of the structure during seismic events. The effectiveness of the isolation provided by the rubber-modified soil layer improves as the intensity of the ground motion record increases. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.48 MB
- About this
data sheet - Reference-ID
10744546 - Published on:
28/10/2023 - Last updated on:
07/02/2024