0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Study on Crystallization Mechanism of Asphalt Mixture in Bridge Deck Pavement

Author(s): ORCID



Medium: journal article
Language(s): English
Published in: Buildings, , n. 6, v. 13
Page(s): 1527
DOI: 10.3390/buildings13061527
Abstract:

This study focuses on unknown crystal precipitates from an asphalt mixture used in bridge deck pavement layers. X-ray fluorescence spectroscopy was used to analyze the composition and source of crystals in the asphalt mixture used in bridge deck pavement, and infiltration tests, porosity tests, splitting tests and multi-wheel rutting tests were carried out to determine the precipitation area and non-precipitation area to explain the influence of crystals on the road performance of an asphalt pavement. A nuclear-free densitometer and 3D ground-penetrating radar (3D GPR) were used to detect the porosity and thickness uniformity of the whole section to study the formation mechanism of crystals. The results showed that the main components of crystals were water molecules, while the rest mainly came from machine-made sand, and there was no significant difference in pavement performance in the areas where crystals precipitated. The crystals were mainly caused by rainwater penetrating into the pavement through coarse segregation areas and collecting in the depression of the lower bearing layer. Under high temperature, the solution precipitated out of the pavement and formed crystals.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10732823
  • Published on:
    04/08/2023
  • Last updated on:
    07/08/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine