0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Statistical Investigation of Bearing Capacity of Pile Foundation Based on Bayesian Reliability Theory

Author(s):

Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-7
DOI: 10.1155/2019/9858617
Abstract:

In order to improve the estimation accuracy of bearing capacity of pile foundation, a new forecast method of bearing capacity of pile foundation was proposed on Jeffrey's noninformative prior using the MCMC (Markov chain Monte Carlo) method of the Bayesian theory. The proposed approach was used to estimate the parameters of Normal distribution. Numerical simulation was used to produce pseudosamples. The parameter estimation of the maximum likelihood method and the Bayesian statistical theory was used to estimate the parameter estimation of the Normal distribution, which has been compared with the theoretical value of the pseudosample of Normal distribution. The result indicates that the forecast model of Normal distribution using the Bayesian method is better than that of the maximum likelihood method, and the performance of the proposed method was improved with increasing of pseudosample number. At last, the proposed method was applied to estimate the parameter of Normal bearing capacity distribution of pile foundation, which shows that the proposed method has a high precision and good applicability.

Copyright: © 2019 Zuolong Luo et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10315114
  • Published on:
    24/06/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine