Statistical Investigation of Bearing Capacity of Pile Foundation Based on Bayesian Reliability Theory
Autor(en): |
Zuolong Luo
Fenghui Dong |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Advances in Civil Engineering, 2019, v. 2019 |
Seite(n): | 1-7 |
DOI: | 10.1155/2019/9858617 |
Abstrakt: |
In order to improve the estimation accuracy of bearing capacity of pile foundation, a new forecast method of bearing capacity of pile foundation was proposed on Jeffrey's noninformative prior using the MCMC (Markov chain Monte Carlo) method of the Bayesian theory. The proposed approach was used to estimate the parameters of Normal distribution. Numerical simulation was used to produce pseudosamples. The parameter estimation of the maximum likelihood method and the Bayesian statistical theory was used to estimate the parameter estimation of the Normal distribution, which has been compared with the theoretical value of the pseudosample of Normal distribution. The result indicates that the forecast model of Normal distribution using the Bayesian method is better than that of the maximum likelihood method, and the performance of the proposed method was improved with increasing of pseudosample number. At last, the proposed method was applied to estimate the parameter of Normal bearing capacity distribution of pile foundation, which shows that the proposed method has a high precision and good applicability. |
Copyright: | © 2019 Zuolong Luo et al. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.41 MB
- Über diese
Datenseite - Reference-ID
10315114 - Veröffentlicht am:
24.06.2019 - Geändert am:
02.06.2021