0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Stabilization of Different Soil Types Using a Hydraulic Binder

Author(s):
ORCID

ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 8, v. 13
Page(s): 2040
DOI: 10.3390/buildings13082040
Abstract:

This paper presents an analysis of the stabilization of different soil types using a hydraulic binder. A study was carried out on soils that can be classified into two groups: cohesive and non-cohesive soils. Clay soils of medium and low plasticity according to the USCS classification were used as cohesive materials, while the sandy material containing dust was considered as non-cohesive material. Samples were taken from fifteen locations in Vojvodina province, Serbia. A hydraulic binder was used as a binder based on cement and lime. The amounts of the binder were estimated at 3, 5, 7, and 9%. In order to determine the basic physical and mechanical characteristics of the specimens, the following tests were performed: unconfined compressive strength after 7 and 28 days, indirect tensile strength after 7 and 28 days, as well as the California Bearing Ratio. Based on the obtained results, it can be concluded that increasing the amount of binder results in an increase in the subgrade load-bearing capacity. However, it should be emphasized that the subgrade containing non-cohesive material had a lower growth in the load-bearing capacity than those with the cohesive material.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10737153
  • Published on:
    02/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine