0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Selection of Response Reduction Factor Considering Resilience Aspect

Author(s): ORCID

ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 13
Page(s): 626
DOI: 10.3390/buildings13030626
Abstract:

The selection of an adequate response reduction factor (R) in the seismic design of a reinforced concrete building is critical to the building’s seismic response. To construct a robust structure, the R factor should be chosen based on the building’s resilience performance. Since no background was provided for the selection of R factors, the study focuses on the right selection of R factors in relation to the building’s functionality, performance level, and resilience. In this study, a high-rise building with multiple R factors (R = 3, 4, 5, and 6) is developed. Five potential recovery paths (RP-1 to RP-5) that matched the realistic scenario were used to estimate the building’s functionality. The building was subjected to uni and bi-directional loadings, and two design levels, Design Basic Earthquake (DBE) and Maximum Considered Earthquake were used to monitor the building’s response. According to the findings, a decrease in the lateral design force with the highest R results in a high ductility requirement and a substantial loss of resilience. The maximum R factor can be recommended under uni-directional loading up to 6, in which the building’s resilience is almost 50%, whereas under bi-directional loading and taking the recommended R factor decreased from 6 to 4.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712653
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine