0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Seismotectonics Considered Artificial Neural Network Earthquake Prediction in Northeast Seismic Region of China

Author(s):



Medium: journal article
Language(s): English
Published in: The Open Civil Engineering Journal, , n. 1, v. 9
Page(s): 522-528
DOI: 10.2174/1874149501509010522
Abstract:

It is well known that earthquakes are a regional event, strongly controlled by local geological structures and circumstances. Reducing the research area can reduce the influence of other irrelevant seismotectonics. A new sub regiondividing scheme, considering the seismotectonics influence, was applied for the artificial neural network (ANN) earthquake prediction model in the northeast seismic region of China (NSRC). The improved set of input parameters and prediction time duration are also discussed in this work. The new dividing scheme improved the prediction accuracy for different prediction time frames. Three different research regions were analyzed as an earthquake data source for the ANN model under different prediction time duration frames. The results show: (1) dividing the research region into smaller subregions can improve the prediction accuracies in NSRC, (2) larger research regions need shorter prediction durations to obtain better performance, (3) different areas have different sets of input parameters in NSRC, and (4) the dividing scheme, considering the seismotectonics frame of the region, yields better results.

Copyright: © 2016 Jian Sheng et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10175609
  • Published on:
    30/12/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine