Seismotectonics Considered Artificial Neural Network Earthquake Prediction in Northeast Seismic Region of China
Autor(en): |
Jian Sheng
Dongmei Mu Hongyan Zhang Han Lv |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | The Open Civil Engineering Journal, März 2016, n. 1, v. 9 |
Seite(n): | 522-528 |
DOI: | 10.2174/1874149501509010522 |
Abstrakt: |
It is well known that earthquakes are a regional event, strongly controlled by local geological structures and circumstances. Reducing the research area can reduce the influence of other irrelevant seismotectonics. A new sub regiondividing scheme, considering the seismotectonics influence, was applied for the artificial neural network (ANN) earthquake prediction model in the northeast seismic region of China (NSRC). The improved set of input parameters and prediction time duration are also discussed in this work. The new dividing scheme improved the prediction accuracy for different prediction time frames. Three different research regions were analyzed as an earthquake data source for the ANN model under different prediction time duration frames. The results show: (1) dividing the research region into smaller subregions can improve the prediction accuracies in NSRC, (2) larger research regions need shorter prediction durations to obtain better performance, (3) different areas have different sets of input parameters in NSRC, and (4) the dividing scheme, considering the seismotectonics frame of the region, yields better results. |
Copyright: | © 2016 Jian Sheng et al. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
0.99 MB
- Über diese
Datenseite - Reference-ID
10175609 - Veröffentlicht am:
30.12.2018 - Geändert am:
02.06.2021