0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Seismic Upgrading of Steel Moment-Resisting Frames by Means of Friction Devices

Author(s):


Medium: journal article
Language(s): English
Published in: The Open Construction and Building Technology Journal, , n. 1, v. 8
Page(s): 289-299
DOI: 10.2174/1874836801408010289
Abstract:

In recent decades, several passive energy dissipation systems have been conceived in order to minimize the damage in structural and non-structural components of either new or existing buildings. In this study, the use of friction damped tension-compression diagonal braces for seismic upgrading of a steel moment resisting frames is investigated. To this aim, nonlinear time history analyses have been carried out on a set of representative frames with and without friction damped braces. In the nonlinear time history analyses, two sets of natural accelerograms compatible with seismic hazard levels of 10% and 2% probability of exceedance in 50 years have been considered. Under these records, the structural response has been comparatively investigated in terms of the maximum inter-storey drift ratio, maximum storey acceleration, residual drift ratio and displacement demand for the friction device. The results clearly highlighted that the application of friction damped braces allows reducing the damages to the main structural elements, thus significantly improving the seismic behaviour of the frame.

Copyright: © 2014 Esra Mete Güneyisi, Mario D''Aniello, Raffaele Landolfo
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10384490
  • Published on:
    23/11/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine