0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Seismic Strengthening Effects Based on Pseudodynamic Testing of a Reinforced Concrete Building Retrofitted with a Wire-Woven Bulk Kagome Truss Damper

Author(s):
ORCID
Medium: journal article
Language(s): English
Published in: Shock and Vibration, , v. 2016
Page(s): 1-17
DOI: 10.1155/2016/3956126
Abstract:

A passive damper with a wire-woven bulk Kagome truss design was recently developed; its applicability as a passive damper to improve the seismic performance of building systems, including shear hysteresis behavior, energy dissipation capacity, and fatigue, was confirmed by material tests. The Kagome truss, a periodic cellular metal type, is composed of evenly distributed helical wires with a constant pitch and helical radius in six directions. The purpose of this study was to develop a new passive damper system for seismic strengthening of existing reinforced concrete (RC) frames. The proposed external connection methodology uses a wire-woven bulk Kagome truss (i.e., a Kagome damper external connection (KDEC) system), to dissipate earthquake energy using the dynamic interaction among an existing building, a support structure, and the Kagome damper installed between them. Four test specimens were designed and then strengthened with the KDEC system. Cyclic loading and pseudodynamic tests were conducted; lateral load-carrying capacity, deformation, and hysteresis characteristics were investigated, as well as the maximum response strength, response ductility, and earthquake damage degree, and compared to a control sample. Test results revealed that the KDEC system effectively dissipated the earthquake energy, showing considerable resilience under large-scale earthquake conditions.

Copyright: © 2016 Jae-Sung Hwang, Kang Seok Lee
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10676331
  • Published on:
    28/05/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine