Seismic Strengthening Effects Based on Pseudodynamic Testing of a Reinforced Concrete Building Retrofitted with a Wire-Woven Bulk Kagome Truss Damper
Auteur(s): |
Jae-Sung Hwang
Kang Seok Lee |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Shock and Vibration, 2016, v. 2016 |
Page(s): | 1-17 |
DOI: | 10.1155/2016/3956126 |
Abstrait: |
A passive damper with a wire-woven bulk Kagome truss design was recently developed; its applicability as a passive damper to improve the seismic performance of building systems, including shear hysteresis behavior, energy dissipation capacity, and fatigue, was confirmed by material tests. The Kagome truss, a periodic cellular metal type, is composed of evenly distributed helical wires with a constant pitch and helical radius in six directions. The purpose of this study was to develop a new passive damper system for seismic strengthening of existing reinforced concrete (RC) frames. The proposed external connection methodology uses a wire-woven bulk Kagome truss (i.e., a Kagome damper external connection (KDEC) system), to dissipate earthquake energy using the dynamic interaction among an existing building, a support structure, and the Kagome damper installed between them. Four test specimens were designed and then strengthened with the KDEC system. Cyclic loading and pseudodynamic tests were conducted; lateral load-carrying capacity, deformation, and hysteresis characteristics were investigated, as well as the maximum response strength, response ductility, and earthquake damage degree, and compared to a control sample. Test results revealed that the KDEC system effectively dissipated the earthquake energy, showing considerable resilience under large-scale earthquake conditions. |
Copyright: | © 2016 Jae-Sung Hwang, Kang Seok Lee |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
5.76 MB
- Informations
sur cette fiche - Reference-ID
10676331 - Publié(e) le:
28.05.2022 - Modifié(e) le:
01.06.2022