0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Seismic Performance of a 1:4 Scale Two-Story Rammed Earth Model Reinforced with Steel Plates Tested on a Bi-Axial Shaking Table

Author(s): ORCID
ORCID
ORCID

ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 12, v. 13
Page(s): 2950
DOI: 10.3390/buildings13122950
Abstract:

During the 16th and 17th centuries, Latin American cities adopted earthen construction techniques from European colonizers. As a result, rammed earth (RE) buildings now occupy an important place in Latin America’s cultural heritage. However, earthquakes around the world have shown that unreinforced earthen constructions are highly vulnerable. For several years, researchers in northern South America have been proposing a technique that consists of installing confining steel plates (or wooden elements) on both sides of the RE walls to form a grid. This system has shown excellent performance in controlling seismic damage and increasing strength and ductility capacity. Although researchers have tested full-scale one- and two-story earthen walls under pseudo-static loading in the laboratory, and one- and two-story earthen walls at 1:1 and 1:2 scales on uniaxial and biaxial shaking tables, the behavior of a complete reinforced module (one- or two-story) on a shaking table has never been assessed. The present study presents the results of shaking table tests performed on two-story RE modules at 1:4 scale. The experimental data indicate that the retrofit system with confining steel plates was effective in reducing the seismic damage of earthen constructions. In addition, the comparison of the results of the 1:4 scale tests with the 1:2 and 1:1 scale tests previously conducted by the researchers shows that the acceleration levels of the equivalent prototypes are in the same order of magnitude for the three scales.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10753359
  • Published on:
    14/01/2024
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine