Rotational Restraint to Purlins Provided by Standing Seam Roof Systems
Author(s): |
Qin Yang
Wei Luan Shaole Yu Junjie Chen |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, 2019, v. 2019 |
Page(s): | 1-8 |
DOI: | 10.1155/2019/2709890 |
Abstract: |
The finite element model used for analyzing the rotational restraint rigidity of standing seam roof systems was developed. The influences of different factors on the rotational restraint rigidity provided by two types of standing seam roof systems were studied. The variables include local deformation of standing seam roof panels, panel thickness, clip tab thickness, and the relative sliding of clip tab and clip base. The restraint mechanism of standing seam roof systems to the purlins was studied. It is shown that the rotational restraint rigidity provided by the two types of researching standing seam roof systems mainly depends on the slide tab thickness and the roof panel thickness. Finally, formulae for calculating rotational restraint rigidity of the LSIII and SS360 standing seam roof systems were also proposed based on parametric analysis results. |
Copyright: | © 2019 Qin Yang et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.93 MB
- About this
data sheet - Reference-ID
10403256 - Published on:
28/12/2019 - Last updated on:
02/06/2021