0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A Rheological Model of Sandstones considering Response to Thermal Treatment

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-9
DOI: 10.1155/2019/2143748
Abstract:

Time-dependent rheological response of geomaterials to thermal treatment is a crucial issue in geothermal energy utilization and deep mineral mining. This response, however, has not yet been fully considered in the existing rheological constitutive models for sandstones. In order to experimentally investigate such responses and establish the associated rheological constitutive model, this study considers the sandstone specimens which have been thermally treated under different temperatures. The triaxial rheological test in conjunction with the scanning electron microscope is employed in the investigation to observe the mechanically and macro-/micromorphologically rheological response. Investigation results show that the thermal treatment induces microcracks and microdefects, and subsequently, they propagate during the creep. As a consequence, the heterogeneous deformation occurs, and macrocracks are present, leading to the irregular fluctuation and mutation in strain over time. A higher temperature contributes to a more severe structure damage and in turn reduces the intactness of sandstones and elevates the rheological response. The investigation allows successful establishment of a three-dimensional constitutive equation considering the instantaneous elastic response to thermal treatment. Based on the equation, a nonlinear visco-elastoplastic rheological constitutive model is developed for sandstones. Comparison with three existing rheological models shows that the model developed in this study could well represent the rheological process of the thermally treated sandstones.

Copyright: © 2019 Xingang Wang et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10311076
  • Published on:
    04/04/2019
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine