0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Research on the Pressure Distribution Law of Synchronous Grouting in Shield Tunnels and the Force on Segments

Author(s):

Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 14
Page(s): 1099
DOI: 10.3390/buildings14041099
Abstract:

The pressure distribution and the force on tunnel segments of synchronous grouting in the shield tail gap channel of shield tunnels are key to controlling the stability and surface settlement of the strata surrounding such tunnels. Based on the basic principles of fluid mechanics and the limit equilibrium method, this study establishes a mathematical model of synchronous grouting in shield tunnels, derives the expressions of the grouting pressure and the force on tunnel segments in the shield tail gap channel, and verifies them using an engineering case study. Studies have shown that the force on tunnel segments and the speed of shield excavation are increasing. An excessive shield excavation speed will cause the load on tunnel segments to increase, which exacerbates the uneven distribution of the grouting pressure. The force on tunnel segments and the grouting pressure also have a positive relationship with the thickness of the shield tail gap, but the impact is limited to a certain range. With an increase in the tunnel radius, the number of grouting holes should be appropriately increased to balance the water and soil pressure in the surrounding strata. These research results can provide a theoretical reference for the design of synchronous grouting for shield tunnels in the future.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773896
  • Published on:
    29/04/2024
  • Last updated on:
    05/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine