0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Research on Prediction Method of Objective Assessment of Building Acoustics Based on Machine Learning

Author(s):




Medium: journal article
Language(s): English
Published in: Journal of Physics: Conference Series, , n. 1, v. 2522
Page(s): 012010
DOI: 10.1088/1742-6596/2522/1/012010
Abstract:

The purpose of this study is to predict the objective assessment of building acoustics more accurately and efficiently. In this paper, the neural network technology based on machine learning and computer acoustic simulation technology are combined to extract 10 typical characteristic parameters and 3 target parameters of 800 halls and rooms. Three matrix training sample databases are established by using Odeon platform. The reverberation time and speech transmission index are trained by BP neural network data fitting. The R results of the target parameters in this study are all more than 0.95. The MSE of the reverberation time parameter is in the range of 0.01-0.05 and the MSE of the STI parameter is less than 1 × 10−4. The results show that the neural network has good prediction accuracy, data generalization and application applicability. This prediction method can quickly evaluate the target parameters, reduce manpower and material resources, and improve work efficiency.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1088/1742-6596/2522/1/012010.
  • About this
    data sheet
  • Reference-ID
    10777675
  • Published on:
    12/05/2024
  • Last updated on:
    12/05/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine