0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Research on Prediction Method of Objective Assessment of Building Acoustics Based on Machine Learning

Autor(en):




Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Journal of Physics: Conference Series, , n. 1, v. 2522
Seite(n): 012010
DOI: 10.1088/1742-6596/2522/1/012010
Abstrakt:

The purpose of this study is to predict the objective assessment of building acoustics more accurately and efficiently. In this paper, the neural network technology based on machine learning and computer acoustic simulation technology are combined to extract 10 typical characteristic parameters and 3 target parameters of 800 halls and rooms. Three matrix training sample databases are established by using Odeon platform. The reverberation time and speech transmission index are trained by BP neural network data fitting. The R results of the target parameters in this study are all more than 0.95. The MSE of the reverberation time parameter is in the range of 0.01-0.05 and the MSE of the STI parameter is less than 1 × 10−4. The results show that the neural network has good prediction accuracy, data generalization and application applicability. This prediction method can quickly evaluate the target parameters, reduce manpower and material resources, and improve work efficiency.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1088/1742-6596/2522/1/012010.
  • Über diese
    Datenseite
  • Reference-ID
    10777675
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine