0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The research into the propagation law of the shock wave of a gas explosion inside a building

Author(s):


ORCID


Medium: journal article
Language(s): English
Published in: Shock and Vibration, , v. 2021
Page(s): 1-16
DOI: 10.1155/2021/4939014
Abstract:

Based on the dissipation rate conservation equations of turbulent kinetic energy in the k-ε turbulence model, a complicated three-dimensional finite element model of a kitchen filled with gas mixture is developed by using the open source field operation and manipulation (OpenFOAM). Two representative kitchens were used to investigate the propagation law of the shock wave of a gas explosion inside a building by considering the key characteristics of the blast shock wave. The influence of some crucial parameters, such as initial conditions and kitchen parameters, on the properties of the blast shock wave is investigated. The basic steps to predict the peak pressure of the blast shock wave are given in consideration of the initial condition and the kitchen whilst the injury effect of the blast shock wave on the humans and animals is evaluated. The research results indicate that the pressure time history and the peak pressure space distribution are greatly influenced by the kitchen design layout. The coupled interaction between the initial temperature and gas volume concentration, especially at the upper and lower explosion limits of the gas, significantly affects the peak pressure. The peak pressure varies significantly with the opening and the buffer; however, it has little relation with the width, length, and height of the kitchen. The proposed method can accurately and effectively predict the peak pressure of the blast shock wave inside buildings. In terms of the peak pressure space distribution of the explosion shock wave, the peak pressure is much higher than the threshold of the killing pressure, which is unsafe for the humans and animals in the building.

Copyright: © 2021 Shu-Chao Lin, You-Chun Xu, Pei-Dong Yang, Shan Gao, Yi-Jun Zhou, Jin Xu
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10676154
  • Published on:
    03/06/2022
  • Last updated on:
    03/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine