0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

The research into the propagation law of the shock wave of a gas explosion inside a building

Auteur(s):


ORCID


Médium: article de revue
Langue(s): anglais
Publié dans: Shock and Vibration, , v. 2021
Page(s): 1-16
DOI: 10.1155/2021/4939014
Abstrait:

Based on the dissipation rate conservation equations of turbulent kinetic energy in the k-ε turbulence model, a complicated three-dimensional finite element model of a kitchen filled with gas mixture is developed by using the open source field operation and manipulation (OpenFOAM). Two representative kitchens were used to investigate the propagation law of the shock wave of a gas explosion inside a building by considering the key characteristics of the blast shock wave. The influence of some crucial parameters, such as initial conditions and kitchen parameters, on the properties of the blast shock wave is investigated. The basic steps to predict the peak pressure of the blast shock wave are given in consideration of the initial condition and the kitchen whilst the injury effect of the blast shock wave on the humans and animals is evaluated. The research results indicate that the pressure time history and the peak pressure space distribution are greatly influenced by the kitchen design layout. The coupled interaction between the initial temperature and gas volume concentration, especially at the upper and lower explosion limits of the gas, significantly affects the peak pressure. The peak pressure varies significantly with the opening and the buffer; however, it has little relation with the width, length, and height of the kitchen. The proposed method can accurately and effectively predict the peak pressure of the blast shock wave inside buildings. In terms of the peak pressure space distribution of the explosion shock wave, the peak pressure is much higher than the threshold of the killing pressure, which is unsafe for the humans and animals in the building.

Copyright: © 2021 Shu-Chao Lin, You-Chun Xu, Pei-Dong Yang, Shan Gao, Yi-Jun Zhou, Jin Xu
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10676154
  • Publié(e) le:
    03.06.2022
  • Modifié(e) le:
    03.06.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine