Recyclability, durability and water vapour adsorption of unstabilised and stabilised compressed earth bricks
Author(s): |
Agostino Walter Bruno
Blake Scott Yann D'Offay-Mancienne Céline Perlot |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Materials and Structures, 16 October 2020, n. 6, v. 53 |
DOI: | 10.1617/s11527-020-01585-7 |
Abstract: |
This paper investigates the recyclability, liquid water durability and water vapour adsorption of both unstabilised and stabilised compressed earth bricks. Stabilised bricks were manufactured by adding either cement or the biopolymer guar gum to the base earth. Unconfined compressive strength tests were then performed on both unstabilised and stabilised earth bricks manufactured with recycled material (i.e. material taken from the failed compressed earth bricks after the compressive strength tests). These tests enabled to assess the influence of recycling on the stiffness, strength and strain energy of all compressed earth bricks. Immersion and drip tests were subsequently performed to investigate the effect of cement and biopolymer stabilisation on the durability of the compressed earth bricks against the weathering action of water. An additional set of laboratory experiments was finally conducted by means of a Dynamic Vapour Sorption (DVS) system to study the effect of earth stabilisation on the capacity of adsorbing/releasing water vapour as the ambient humidity changes. Outcomes from this experimental campaign showed that both unstabilised and biopolymer stabilised earth bricks maintained a similar mechanical performance after recycling, while cement stabilised bricks showed a remarkable reduction of both stiffness and strength. Finally, both cement and biopolymer stabilised bricks improved the liquid water durability while reducing the water vapour adsorption compared with the unstabilised earth bricks. Results from this experimental work will be useful for life cycle assessments, especially for modelling the end-of-life of the material as well as its potential reuse. |
Copyright: | © The Author(s) 2020 |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.43 MB
- About this
data sheet - Reference-ID
10525940 - Published on:
11/12/2020 - Last updated on:
02/06/2021