0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Quantitative Visualization Monitoring of Cracks at Shotcrete-Rock Interface Based on Acoustic Emission

Author(s):
ORCID


ORCID
Medium: journal article
Language(s): English
Published in: Structural Control and Health Monitoring, , v. 2023
Page(s): 1-17
DOI: 10.1155/2023/9958905
Abstract:

To investigate the possibility of quantitative monitoring of the fracture process zone (FPZ) at the shotcrete-rock interface, the acoustic emission (AE) and digital image correlation (DIC) are used to monitor the three-point bending test of shotcrete-rock specimens. Firstly, the AE intensity signal characteristics during damage to the shotcrete-rock interface are analyzed. Then, the spatial b-value of AE is used to visually characterize the shotcrete-rock interface damage, and the interface damage characteristics of two specimens, shotcrete-granite and shotcrete-sandstone, are analyzed using this analysis method. The analysis reveals that not only the AE spatial b-value can determine the location of microdamage within the interface but it can also characterize the degree of damage. Finally, a new parameter, Tb-value, is constructed based on the AE spatial b-value to quantitatively characterize the FPZ, and the newly established characterization method is validated with the FPZ monitored by DIC. The results show that the Tb-value not only locates and visually characterizes the location of the FPZ within the specimen but also enables the quantitative determination of the FPZ. This provides a new idea for localizing and quantitatively monitoring cracks and FPZs inside structures using AE techniques.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1155/2023/9958905.
  • About this
    data sheet
  • Reference-ID
    10734830
  • Published on:
    03/09/2023
  • Last updated on:
    03/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine