0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Probabilistic Design of Axially Compressed Composite Cylinders With Geometric and Loading Imperfections

Author(s):




Medium: journal article
Language(s): English
Published in: International Journal of Structural Stability and Dynamics, , n. 4, v. 10
Page(s): 623-644
DOI: 10.1142/s0219455410003658
Abstract:

The discrepancy between the analytically determined buckling load of perfect cylindrical shells and experimental test results is traced back to imperfections. The most frequently used guideline for design of cylindrical shells, NASA SP-8007, proposes a deterministic calculation of a knockdown factor with respect to the ratio of radius and wall thickness, which turned out to be very conservative in numerous cases and which is not intended for composite shells. In order to determine a lower bound for the buckling load of an arbitrary type of shell, probabilistic design methods have been developed. Measured imperfection patterns are described using double Fourier series, whereas the Fourier coefficients characterize the scattering of geometry. In this paper, probabilistic analyses of buckling loads are performed regarding Fourier coefficients as random variables. A nonlinear finite element model is used to determine buckling loads, and Monte Carlo simulations are executed. The probabilistic approach is used for a set of six similarly manufactured composite shells. The results indicate that not only geometric but also nontraditional imperfections like loading imperfections have to be considered for obtaining a reliable lower limit of the buckling load. Finally, further Monte Carlo simulations are executed including traditional as well as loading imperfections, and lower bounds of buckling loads are obtained, which are less conservative than NASA SP-8007.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1142/s0219455410003658.
  • About this
    data sheet
  • Reference-ID
    10353007
  • Published on:
    14/08/2019
  • Last updated on:
    14/08/2019
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine