^ Prediction of Small-Strain Dynamic Properties on Granulated Spherical Glass Bead-Polyurethane Mixtures | Structurae
0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Prediction of Small-Strain Dynamic Properties on Granulated Spherical Glass Bead-Polyurethane Mixtures

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2019
Page(s): 1-12
DOI: 10.1155/2019/6348326
Abstract:

This paper aims to propose predictive equations for the small-strain shear modulus (Gmax) and small-strain damping ratio (Dmin) of a granulated mixture with plastic and nonplastic materials to reduce the dynamic energy of the ground. Polyurethane bead (PB) and glass bead (GB) were used as the plastic and nonplastic materials, respectively. 180 resonant-column tests were conducted with various conditions affecting the dynamic properties, such as nonplastic particle content (PC), void ratio (e), particle-size ratio (sr), and mean effective confining pressure (σ'm). The results showed that Gmaxand Dmin, respectively, increased and decreased asedecreased with increasingσ'mof material mixtures. In addition, Gmaxdecreased with an increase in PC, whereas Dminincreased. It was also found that srof materials affected the changes in Gmaxand Dmin. With an increase in sr, Gmaxincreased while Dmindecreased because small particles do not hinder the behavior of large particles as the size of larger particles increases. Finally, based on the results, new equations for estimating Gmaxand Dminof a granulated mixture with PB and GB were proposed as functions of PC,e, median grain size (D50), andσ'm.

Copyright: © Gyeong-o Kang et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10375366
  • Published on:
    19/09/2019
  • Last updated on:
    02/06/2021