• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Prediction of Small-Strain Dynamic Properties on Granulated Spherical Glass Bead-Polyurethane Mixtures

Auteur(s):


Médium: article de revue
Langue(s): en 
Publié dans: Advances in Civil Engineering, , v. 2019
Page(s): 1-12
DOI: 10.1155/2019/6348326
Abstrait:

This paper aims to propose predictive equations for the small-strain shear modulus (Gmax) and small-strain damping ratio (Dmin) of a granulated mixture with plastic and nonplastic materials to reduce the dynamic energy of the ground. Polyurethane bead (PB) and glass bead (GB) were used as the plastic and nonplastic materials, respectively. 180 resonant-column tests were conducted with various conditions affecting the dynamic properties, such as nonplastic particle content (PC), void ratio (e), particle-size ratio (sr), and mean effective confining pressure (σ'm). The results showed that Gmax and Dmin, respectively, increased and decreased as e decreased with increasing σ'm of material mixtures. In addition, Gmax decreased with an increase in PC, whereas Dmin increased. It was also found that sr of materials affected the changes in Gmax and Dmin. With an increase in sr, Gmax increased while Dmin decreased because small particles do not hinder the behavior of large particles as the size of larger particles increases. Finally, based on the results, new equations for estimating Gmax and Dmin of a granulated mixture with PB and GB were proposed as functions of PC, e, median grain size (D50), and σ'm.

Copyright: © Gyeong-o Kang et al. et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

Publicité

  • Informations
    sur cette fiche
  • Reference-ID
    10375366
  • Publié(e) le:
    19.09.2019
  • Modifié(e) le:
    06.10.2019