0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Predicting GPR Signals from Concrete Structures Using Artificial Intelligence-Based Method

Author(s):


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-9
DOI: 10.1155/2021/6610805
Abstract:

This paper presents the application of an Artificial Intelligence-based method in analyzing the effects of environmental conditions, chloride contamination in concrete, and surface corrosion of rebars on the amplitude of Ground Penetrating Radar (GPR) signals. Six reinforced concrete slabs with different chloride contamination mixtures were fabricated and tested. GPR data were collected under various temperature and ambient humidity combinations. A total of 288 rebar picks were used for training, validation, and testing the proposed Artificial Neural Network (ANN) model. Multiple ANN model configurations with a variation in learning algorithms and the number of nodes in the hidden layer were explored to obtain the optimal model for the nondestructive data. It is shown that the “trainlm” learning algorithm produced the high accuracy prediction of the reflection amplitude of GPR signals. The sensitivity analysis was also conducted with the ANN model to investigate the effects of the input on the output parameters. Results from the sensitivity analysis revealed that the GPR reflection amplitudes were more sensitive to the changes of temperature parameter (TEM) and chloride contamination level (CCL), while they were less sensitive to the variation of ambient relative humidity (ARH) and rust condition on the rebar surface (CSR).

Copyright: © Wael Zatar et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10560625
  • Published on:
    03/02/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine