0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Predicting GPR Signals from Concrete Structures Using Artificial Intelligence-Based Method

Autor(en):


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2021
Seite(n): 1-9
DOI: 10.1155/2021/6610805
Abstrakt:

This paper presents the application of an Artificial Intelligence-based method in analyzing the effects of environmental conditions, chloride contamination in concrete, and surface corrosion of rebars on the amplitude of Ground Penetrating Radar (GPR) signals. Six reinforced concrete slabs with different chloride contamination mixtures were fabricated and tested. GPR data were collected under various temperature and ambient humidity combinations. A total of 288 rebar picks were used for training, validation, and testing the proposed Artificial Neural Network (ANN) model. Multiple ANN model configurations with a variation in learning algorithms and the number of nodes in the hidden layer were explored to obtain the optimal model for the nondestructive data. It is shown that the “trainlm” learning algorithm produced the high accuracy prediction of the reflection amplitude of GPR signals. The sensitivity analysis was also conducted with the ANN model to investigate the effects of the input on the output parameters. Results from the sensitivity analysis revealed that the GPR reflection amplitudes were more sensitive to the changes of temperature parameter (TEM) and chloride contamination level (CCL), while they were less sensitive to the variation of ambient relative humidity (ARH) and rust condition on the rebar surface (CSR).

Copyright: © Wael Zatar et al.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10560625
  • Veröffentlicht am:
    03.02.2021
  • Geändert am:
    02.06.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine