Predicting Compressive Strength of Concrete Containing Industrial Waste Materials: Novel and Hybrid Machine Learning Model
Author(s): |
Mohammed Majeed Hameed
Mustafa Abbas Abed Nadhir Al-Ansari Mohamed Khalid AlOmar |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2022, v. 2022 |
Page(s): | 1-19 |
DOI: | 10.1155/2022/5586737 |
Abstract: |
In the construction and cement manufacturing sectors, the development of artificial intelligence models has received remarkable progress and attention. This paper investigates the capacity of hybrid models conducted for predicting the compressive strength (CS) of concrete where the cement was partially replaced with ground granulated blast-furnace slag (FS) and fly ash (FA) materials. Accurate estimation of CS can reduce the cost and laboratory tests. Since the traditional method of calculation CS is complicated and requires lots of effort, this article presents new predictive models called SVR − PSO and SVR − GA, that are a hybridization of support vector regression (SVR) with improved particle swarm algorithm (PSO) and genetic algorithm (GA). Furthermore, the hybrid models (i.e., SVR − PSO and SVR − GA) were used for the first time to predict CS of concrete where the cement component is partially replaced. The improved PSO and GA are given essential roles in tuning the hyperparameters of the SVR model, which have a significant influence on model accuracy. The suggested models are evaluated against extreme learning machine (ELM) via quantitative and visual evaluations. The models are evaluated using eight statistical parameters, and then the SVR-PSO has provided the highest accuracy than comparative models. For instance, the SVR − PSO during the testing phase provided fewer root mean square error (RMSE) with 1.386 MPa, a higher Nash–Sutcliffe model efficiency coefficient (NE) of 0.972, and lower uncertainty at 95% (U₉₅) with 28.776%. On the other hand, the SVR − GA and ELM models provide lower accuracy with RMSE of 2.826 Mpa and 2.180, NE with 0.883 and 0.930, and U₉₅ with 518.686 183.182, respectively. Sensitivity analysis is carried out to select the influential parameters that significantly affect CS. Overall, the proposed model showed a good prediction of CS of concrete where cement is partially replaced and outperformed 14 models developed in the previous studies. |
Copyright: | © Mohammed Majeed Hameed et al. et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
1.53 MB
- About this
data sheet - Reference-ID
10663906 - Published on:
09/05/2022 - Last updated on:
01/06/2022