0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Predicting Compressive Strength of Concrete Containing Industrial Waste Materials: Novel and Hybrid Machine Learning Model

Auteur(s): ORCID

ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2022
Page(s): 1-19
DOI: 10.1155/2022/5586737
Abstrait:

In the construction and cement manufacturing sectors, the development of artificial intelligence models has received remarkable progress and attention. This paper investigates the capacity of hybrid models conducted for predicting the compressive strength (CS) of concrete where the cement was partially replaced with ground granulated blast-furnace slag ( FS ) and fly ash ( FA ) materials. Accurate estimation of CS can reduce the cost and laboratory tests. Since the traditional method of calculation CS is complicated and requires lots of effort, this article presents new predictive models called SVR PSO and SVR GA , that are a hybridization of support vector regression ( SVR ) with improved particle swarm algorithm ( PSO ) and genetic algorithm ( GA ). Furthermore, the hybrid models (i.e., SVR PSO and SVR GA ) were used for the first time to predict CS of concrete where the cement component is partially replaced. The improved PSO and GA are given essential roles in tuning the hyperparameters of the SVR model, which have a significant influence on model accuracy. The suggested models are evaluated against extreme learning machine (ELM) via quantitative and visual evaluations. The models are evaluated using eight statistical parameters, and then the SVR-PSO has provided the highest accuracy than comparative models. For instance, the SVR PSO during the testing phase provided fewer root mean square error RMSE with 1.386 MPa, a higher Nash–Sutcliffe model efficiency coefficient ( NE ) of 0.972, and lower uncertainty at 95% ( U 95 ) with 28.776%. On the other hand, the SVR GA and ELM models provide lower accuracy with RMSE of 2.826 MPa and 2.180, NE with 0.883 and 0.930, and U 95 with 518.686 183.182, respectively. Sensitivity analysis is carried out to select the influential parameters that significantly affect CS . Overall, the proposed model showed a good prediction of CS of concrete where cement is partially replaced and outperformed 14 models developed in the previous studies.

Copyright: © Mohammed Majeed Hameed et al. et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10663906
  • Publié(e) le:
    09.05.2022
  • Modifié(e) le:
    01.06.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine