0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Pothole Detection Using Deep Learning: A Real-Time and AI-on-the-Edge Perspective

Author(s): ORCID
ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2022
Page(s): 1-13
DOI: 10.1155/2022/9221211
Abstract:

Asphalt pavement distresses are the major concern of underdeveloped and developed nations for the smooth running of daily life commute. Among various pavement failures, numerous research can be found on pothole detection as they are injurious to automobiles and passengers that may turn into an accident. This work is intended to explore the potential of deep learning models and deploy three superlative deep learning models on edge devices for pothole detection. In this work, we have exploited the AI kit (OAK-D) on a single-board computer (Raspberry Pi) as an edge platform for pothole detection. Detailed real-time performance comparison of state-of-the-art deep learning models and object detection frameworks (YOLOv1, YOLOv2, YOLOv3, YOLOv4, Tiny-YOLOv4, YOLOv5, and SSD-mobilenetv2) for pothole detection is presented. The experimentation is performed on an image dataset with pothole in diverse road conditions and illumination variations as well as on real-time video captured through a moving vehicle. The Tiny-YOLOv4, YOLOv4, and YOLOv5 evince the highest mean average precision (mAP) of 80.04%, 85.48%, and 95%, respectively, on the image set, thus proving the strength of the proposed approach for pothole detection and deployed on OAK-D for real-time detection. The study corroborated Tiny-YOLOv4 as the befitted model for real-time pothole detection with 90% detection accuracy and 31.76 FPS.

Copyright: © Muhammad Haroon Asad et al. et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10663815
  • Published on:
    09/05/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine