Pothole Detection Using Deep Learning: A Real-Time and AI-on-the-Edge Perspective
Auteur(s): |
Muhammad Haroon Asad
Saran Khaliq Muhammad Haroon Yousaf Muhammad Obaid Ullah Afaq Ahmad |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2022, v. 2022 |
Page(s): | 1-13 |
DOI: | 10.1155/2022/9221211 |
Abstrait: |
Asphalt pavement distresses are the major concern of underdeveloped and developed nations for the smooth running of daily life commute. Among various pavement failures, numerous research can be found on pothole detection as they are injurious to automobiles and passengers that may turn into an accident. This work is intended to explore the potential of deep learning models and deploy three superlative deep learning models on edge devices for pothole detection. In this work, we have exploited the AI kit (OAK-D) on a single-board computer (Raspberry Pi) as an edge platform for pothole detection. Detailed real-time performance comparison of state-of-the-art deep learning models and object detection frameworks (YOLOv1, YOLOv2, YOLOv3, YOLOv4, Tiny-YOLOv4, YOLOv5, and SSD-mobilenetv2) for pothole detection is presented. The experimentation is performed on an image dataset with pothole in diverse road conditions and illumination variations as well as on real-time video captured through a moving vehicle. The Tiny-YOLOv4, YOLOv4, and YOLOv5 evince the highest mean average precision (mAP) of 80.04%, 85.48%, and 95%, respectively, on the image set, thus proving the strength of the proposed approach for pothole detection and deployed on OAK-D for real-time detection. The study corroborated Tiny-YOLOv4 as the befitted model for real-time pothole detection with 90% detection accuracy and 31.76 FPS. |
Copyright: | © Muhammad Haroon Asad et al. et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
6.48 MB
- Informations
sur cette fiche - Reference-ID
10663815 - Publié(e) le:
09.05.2022 - Modifié(e) le:
01.06.2022