Parametric Modeling and Numerical Simulation of a Three-Dimensional Random Aggregate Model of Lime–Sand Piles Based on Python–Abaqus
Author(s): |
Jia Yuan
Jianhui Si Yong Qiao Wenshuo Sun Shibo Qiao Xiaoyu Niu Ming Zhou Junpeng Ju |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 19 June 2024, n. 6, v. 14 |
Page(s): | 1842 |
DOI: | 10.3390/buildings14061842 |
Abstract: |
A lime–sand pile is a three-phase particle composite material composed of a lime matrix, sand, and a loess aggregate at the meso level. Establishing a random aggregate model that can reflect the actual aggregate gradation, content, and morphology is the premise of numerical simulations of the meso-mechanics of lime–sand piles. In this paper, the secondary development of Abaqus 2022 is realized by writing Python 3.12 scripts, and a parameterized three-phase mixed lime–sand pile random meso-spherical aggregate model is obtained. A meso-modeling idea of lime–sand piles is creatively proposed, the integrated-generation algorithm of a spherical aggregate of different materials is written, and the material’s properties and mesh generation are given by the algorithm. Finally, a numerical simulation of temperature–expansion statics is carried out using an established mesoscopic model. Under different mixing ratios, the expansion force increases with an increase in the lime proportion. The increase in the expansion force is approximately 45% of that without an increased lime proportion. The simulated expansion forces are 8.81 kN, 12.61 kN, and 18.89 kN, respectively, which are similar to the experimental results for laboratory specimens, and the relative error is less than 3%. In the case of different height ratios, with increases in height, the change in the expansion force is very small, and the relative error between the simulated value and the experimental value is less than 2%, which further verifies the reliability of the mesoscopic random model of lime–sand piles. The model can be used to guide the practical application of engineering. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.36 MB
- About this
data sheet - Reference-ID
10787943 - Published on:
20/06/2024 - Last updated on:
20/06/2024