0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Optimizing the Support System of a Shallow Buried Tunnel under Unsymmetrical Pressure

Author(s):

ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 6, v. 14
Page(s): 1825
DOI: 10.3390/buildings14061825
Abstract:

In the construction process of tunnel inlet sections, the rock mass can sustain unsymmetrical pressure due to asymmetrical terrain on the two sides of the tunnel. The fact that the inlet sections are usually under shallow buried conditions with strongly weathered rock mass exacerbates the issue. This paper discusses optimization strategies of the initial support of a shallow buried tunnel based on the analytical results of asymmetrical loading characteristics. Numerical simulation is performed with particle flow code (PFC) using the Jianshanji tunnel project as an example. The simulation results show that the bench excavation has slightly less total deformation than the full-section excavation but the deformation range is wider, especially in the tunnel arch. Both lining support and slope reduction treatments can effectively improve rock deformation, with lining support demonstrating better performance in controlling deformation and adjusting stress distribution. Based on the simulation results, the bench excavation and lining support are used in the actual project, and the corresponding optimization control measures were adopted to address deformation issues, including crushed-stone backfilling for compression resistance, advanced grouting reinforcement, and grouting. The field data show that the tunnel stability is effectively improved by adopting the optimization schemes, which further validates the effectiveness of the proposed unsymmetrical control method.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10787814
  • Published on:
    20/06/2024
  • Last updated on:
    20/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine