0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Optimization of Temperature-Control Measures for Concrete Structures: A Case Study of the Sluice Project

Author(s):
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2018
Page(s): 1-8
DOI: 10.1155/2018/4823130
Abstract:

Temperature control and crack prevention in sluice pier concrete is a key issue in the early design and construction period. Strong surface insulation may lead to cracks after formwork removal, while weak surface insulation may result in a high crack risk in the early age. The water-cooling measure may also cause severe cracks at a rapid cooling rate. Therefore, the optimum temperature control scheme should be comparatively studied against the alternatives. In this paper, we investigate crack prevention in sluice pier concrete as a multiple-factor system optimization problem and investigate an optimization method for temperature-control measures using the uniform design method and a neural network model. The minimum ratios for the internal and surface points of the sluice pier concrete are taken as inputs, and the corresponding combinations of temperature-control parameters based on the uniform design method are taken as outputs. Combined with a sluice project, the optimization method for the temperature-control measures is implemented. The analysis results show that internal pipe cooling combined with reasonable surface heat preservation measures should be employed, and a low concrete pouring temperature is more beneficial than a low cooling temperature and long duration for crack prevention in sluice pier concrete.

Copyright: © 2018 Yaoying Huang
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10176553
  • Published on:
    30/11/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine