Optimization of Temperature-Control Measures for Concrete Structures: A Case Study of the Sluice Project
Autor(en): |
Yaoying Huang
|
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Advances in Civil Engineering, 2018, v. 2018 |
Seite(n): | 1-8 |
DOI: | 10.1155/2018/4823130 |
Abstrakt: |
Temperature control and crack prevention in sluice pier concrete is a key issue in the early design and construction period. Strong surface insulation may lead to cracks after formwork removal, while weak surface insulation may result in a high crack risk in the early age. The water-cooling measure may also cause severe cracks at a rapid cooling rate. Therefore, the optimum temperature control scheme should be comparatively studied against the alternatives. In this paper, we investigate crack prevention in sluice pier concrete as a multiple-factor system optimization problem and investigate an optimization method for temperature-control measures using the uniform design method and a neural network model. The minimum ratios for the internal and surface points of the sluice pier concrete are taken as inputs, and the corresponding combinations of temperature-control parameters based on the uniform design method are taken as outputs. Combined with a sluice project, the optimization method for the temperature-control measures is implemented. The analysis results show that internal pipe cooling combined with reasonable surface heat preservation measures should be employed, and a low concrete pouring temperature is more beneficial than a low cooling temperature and long duration for crack prevention in sluice pier concrete. |
Copyright: | © 2018 Yaoying Huang |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
2.15 MB
- Über diese
Datenseite - Reference-ID
10176553 - Veröffentlicht am:
30.11.2018 - Geändert am:
02.06.2021