Neural Network Modelling of Stress-Strain Relationships for Tensile Concrete in Flexure/Tempiamo betono lenkiant įtempių deformacijų diagramų modeliavimas neuroniniais tinklais
Author(s): |
Gintaris Kaklauskas
Jamshid Ghaboussi Xiping Wu |
---|---|
Medium: | journal article |
Language(s): | Latvian |
Published in: | Journal of Civil Engineering and Management, October 1999, n. 5, v. 5 |
Page(s): | 295-301 |
DOI: | 10.3846/13921525.1999.10531479 |
Abstract: |
Straipsnyje pateikiama daugiaparametrio tempiamo betono lenkiant fizikinio modelio sukūrimo metodika, naudojant neuroninius tinklus. Tai ankstesnio straipsnio [9], kuris supažindino su grįžtamuoju neuroniniu tinklu (backpropagation neural network), tinklo „mokymo” taisyklėmis, dinaminiais mazgų kūrimo principais bei fizikinių modelių kūrimo neuroniniais tinklais metodologia, tęsinys. Kuriant tempiamo betono neuroninių tinklų fizikinį modelį, buvo panaudotos anksčiau gautos [3] tempiamo betono įtempių-deformacijių kreivės (1 ir 2 pav.). Šios kreivės buvo nu- statytos iš eksperimentinių gelžbetoninių sijų momentų-kreivių diagramų [4], taikant neseniai sukurtą. metodą. [1–3]. Eksperimentinės sijos buvo skirtingo skerspjūvio aukščio, skyrėsi jų armavimo koeficientas ir armatūros strypų skersmuo (1 lent.). Gautų įtempių-deformacijų kreivių analizė parodė, kad jų forma priklauso nuo įvairių parametrų, pateiktų 2 ir 3 lentelėse. Idealiu atveju tempiamo betono deformacija ir šie parametrai turėtų atitikti neuroninio tinklo pradinių duomenų sluoksnio mazgus. Kadangi nepakako eksperimentinių duomenų, šiame darbe buvo pasirinkti še⋅i pradinių duomenų sluoksnio mazgai (3 pav.): tempiamo betono deformacija, betono stiprumas tempiant, betono tamprumo modulis, armavimo procentas, armatūros strypų skersmuo ir sijos skerspjūvio aukštis. Rezultatų sluoksnyje imtas vienas mazgas, atitinkantis tempiamo betono įtempius (3 pav.). Buvo sukurti du neuroniniai tinklai. Pirmuoju atveju tinklo “mokymui” buvo panaudoti visų 14 sijų duomenys. Antruoju atveju buvo panaudoti 10 sijų duomenys, o likusios keturios sijos buvo paliktos tinklui testuoti. Abiem atvejais, prieš “apmokant” tinklus, buvo imti du tarpiniai sluoksniai, kurių kiekviename buvo po du mazgus. Baigus mokymą, tarpiniuose sluoksniuose buvo po penkis mazgus. Gautas geras neuroniniais tinklais apskaičiuotų bei eksperimentinių tempiamo betono įtempių-deformacijų (4 ir 5 pav.) bei momentų-kreivių diagramų (6 pav.) atitikimas. |
Copyright: | © 1999 The Author(s). Published by VGTU Press. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
0.93 MB
- About this
data sheet - Reference-ID
10363767 - Published on:
12/08/2019 - Last updated on:
02/06/2021