0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Neural Network Modelling of Stress-Strain Relationships for Tensile Concrete in Flexure/Tempiamo betono lenkiant įtempių deformacijų diagramų modeliavimas neuroniniais tinklais

Autor(en):


Medium: Fachartikel
Sprache(n): Lettisch
Veröffentlicht in: Journal of Civil Engineering and Management, , n. 5, v. 5
Seite(n): 295-301
DOI: 10.3846/13921525.1999.10531479
Abstrakt:

Straipsnyje pateikiama daugiaparametrio tempiamo betono lenkiant fizikinio modelio sukūrimo metodika, naudojant neuroninius tinklus. Tai ankstesnio straipsnio [9], kuris supažindino su grįžtamuoju neuroniniu tinklu (backpropagation neural network), tinklo „mokymo” taisyklėmis, dinaminiais mazgų kūrimo principais bei fizikinių modelių kūrimo neuroniniais tinklais metodologia, tęsinys. Kuriant tempiamo betono neuroninių tinklų fizikinį modelį, buvo panaudotos anksčiau gautos [3] tempiamo betono įtempių-deformacijių kreivės (1 ir 2 pav.). Šios kreivės buvo nu- statytos iš eksperimentinių gelžbetoninių sijų momentų-kreivių diagramų [4], taikant neseniai sukurtą. metodą. [1–3]. Eksperimentinės sijos buvo skirtingo skerspjūvio aukščio, skyrėsi jų armavimo koeficientas ir armatūros strypų skersmuo (1 lent.). Gautų įtempių-deformacijų kreivių analizė parodė, kad jų forma priklauso nuo įvairių parametrų, pateiktų 2 ir 3 lentelėse. Idealiu atveju tempiamo betono deformacija ir šie parametrai turėtų atitikti neuroninio tinklo pradinių duomenų sluoksnio mazgus. Kadangi nepakako eksperimentinių duomenų, šiame darbe buvo pasirinkti še⋅i pradinių duomenų sluoksnio mazgai (3 pav.): tempiamo betono deformacija, betono stiprumas tempiant, betono tamprumo modulis, armavimo procentas, armatūros strypų skersmuo ir sijos skerspjūvio aukštis. Rezultatų sluoksnyje imtas vienas mazgas, atitinkantis tempiamo betono įtempius (3 pav.). Buvo sukurti du neuroniniai tinklai. Pirmuoju atveju tinklo “mokymui” buvo panaudoti visų 14 sijų duomenys. Antruoju atveju buvo panaudoti 10 sijų duomenys, o likusios keturios sijos buvo paliktos tinklui testuoti. Abiem atvejais, prieš “apmokant” tinklus, buvo imti du tarpiniai sluoksniai, kurių kiekviename buvo po du mazgus. Baigus mokymą, tarpiniuose sluoksniuose buvo po penkis mazgus. Gautas geras neuroniniais tinklais apskaičiuotų bei eksperimentinių tempiamo betono įtempių-deformacijų (4 ir 5 pav.) bei momentų-kreivių diagramų (6 pav.) atitikimas.

Copyright: © 1999 The Author(s). Published by VGTU Press.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10363767
  • Veröffentlicht am:
    12.08.2019
  • Geändert am:
    02.06.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine